High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system
نویسندگان
چکیده
Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties.
منابع مشابه
The effect of the interlayer element on the exfoliation of layered Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets
The experimental exfoliation of layered, ternary transition-metal carbide and nitride compounds, known as MAX phases, into two-dimensional (2D) nanosheets, is a great development in the synthesis of novel low-dimensional inorganic systems. Among the MAX phases, Mo-containing ones might be considered as the source for obtaining Mo2C nanosheets with potentially unique properties, if they could be...
متن کاملSynthesis of TiO2 nanosheets via an exfoliation route assisted by a surfactant.
Titanium dioxide (TiO2) is an important material for photovoltaics, photocatalysis, sensors and lithium ion batteries. Various morphologies of TiO2 nanomaterials have been synthesized, including zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires and nanotubes, as well as three-dimensional (3D) nanostructures. But the two-dimensional (2D) TiO2 nanostructures, which are expected ...
متن کاملNanometre-thick single-crystalline nanosheets grown at the water–air interface
To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can...
متن کاملConductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture.
Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. ...
متن کاملSelf-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids
At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliati...
متن کامل